Deterministic distinct-degree factorization of polynomials over finite fields
نویسندگان
چکیده
A deterministic polynomial time algorithm is presented for finding the distinctdegree factorization of multivariate polynomials over finite fields. As a consequence, one can count the number of irreducible factors of polynomials over finite fields in deterministic polynomial time, thus resolving a theoretical open problem of Kaltofen from 1987.
منابع مشابه
Factoring Multivariate Polynomials over Finite Fields
We consider the deterministic complexity of the problem of polynomial factorization over finite fields given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible polynomials. This problem admits a randomized polynomial-time algorithm and no deterministic polynomial-time algorithm is known. In this chapter, we give a determ...
متن کاملNew Algorithms for Finding Irreducible Polynomials over Finite Fields
We present a new algorithm for finding an irreducible polynomial of specified degree over a finite field. Our algorithm is deterministic, and it runs in polynomial time for fields of small characteristic. We in fact prove the stronger result that the problem of finding irreducible polynomials of specified degree over a finite field is deterministic polynomial-time reducible to the problem of fa...
متن کاملThe Complete Analysis of a Polynomial Factorization Algorithm over Finite Fields
A unified treatment of parameters relevant to factoring polynomials over finite fields is given. The framework is based on generating functions for describing parameters of interest and on singularity analysis for extracting asymptotic values. An outcome is a complete analysis of the standard polynomial factorization chain that is based on elimination of repeated factors, distinct degree factor...
متن کاملOn the Deterministic Complexity of Factoring Polynomials over Finite Fields
We present a new deterministic algorithm for factoring polynomials over Z p of degree n. We show that the worst-case running time of our algorithm is O(p 1=2 (log p) 2 n 2+), which is faster than the running times of previous deterministic algorithms with respect to both n and p. We also show that our algorithm runs in polynomial time for all but at most an exponentially small fraction of the p...
متن کاملTrading GRH for algebra: algorithms for factoring polynomials and related structures
In this paper we develop techniques that eliminate the need of the Generalized Riemann Hypothesis (GRH) from various (almost all) known results about deterministic polynomial factoring over finite fields. Our main result shows that given a polynomial f(x) of degree n over a finite field k, we can find in deterministic poly(n n, log |k|) time either a nontrivial factor of f(x) or a nontrivial au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 38 شماره
صفحات -
تاریخ انتشار 2004